Richard Socher (Salesforce) @ the Cornell Tech Learning Machines Seminar Series (LMSS — TITLE: The Natural Language Decathlon: Multitask Learning as Question Answering ABSTRACT: Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce the Natural Language Decathlon (decaNLP), a challenge that spans ten tasks: question answering, machine translation, summarization, natural language inference, sentiment analysis, semantic role labeling, zero-shot relation extraction, goal-oriented dialogue, semantic parsing, and commonsense pronoun resolution. We cast all tasks as question answering over a context. Furthermore, we present a new Multitask Question Answering Network (MQAN) jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. MQAN shows improvements in transfer learning for machine translation and named entity recognition, domain adaptation for sentiment analysis and natural language inference, and zero-shot capabilities for text classification. We demonstrate that the MQAN’s multi-pointer-generator decoder is key to this success and performance further improves with an anti-curriculum training strategy. Though designed for decaNLP, MQAN also achieves state of the art results on the WikiSQL semantic parsing task in the single-task setting. We release code for procuring and processing data, training and evaluating models, and reproducing all experiments for decaNLP. BIO: Richard Socher is Chief Scientist at Salesforce. He leads the company’s research efforts and brings state of the art artificial intelligence solutions into the platform. Prior, Richard was [More]